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SUMMARY

The present paper discusses large eddy simulations of incompressible turbulent �ows in complex ge-
ometries. Attention is focused on the application of the Schur complement method for the solution of
the elliptic equations arising from the fractional step procedure and=or the semi-implicit discretization
of the momentum equations in velocity–pressure representation. Fast direct and iterative Poisson solvers
are compared and their global e�ciency evaluated both in serial and parallel architecture environments
for model problems of physical relevance. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of turbulent �ows can be achieved applying direct numerical simulation
approach (DNS), where all the relevant scales are numerically resolved, or large eddy simu-
lation approach (LES), where only the largest and anisotropic scales are resolved while the
smallest ones are modelled by an ad hoc model [1]. Both procedures are being considered
mature for application to �ows more complex than simple building block �ows whose sim-
ulation has justi�ed their success and di�usion as reliable turbulence research tools. In this
frame, the term complexity covers both more challenging physical problems (e.g. involving
phase changes, combustion, shocks and acoustics to name a few) as well as �ows in geome-
tries of increased complexity (e.g. blunt and blu� body �ows in composite con�gurations).
These issues may, and usually do, occur simultaneously making it di�cult, if not impossible,
to consider them separately.
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The latest achievements in the �eld of simulation have been made possible by the rapid
advancements of the ready-to-use hardware technology and by the combined progresses of the
numerical algorithms and subgrid stress closures [1, 2]. In particular, LES can be considered,
in some senses, mature for industrial application, as witnessed by the introduction of this
technique in commercial software packages [3]. Nevertheless, we must reckon that, despite the
impressive progresses in the �eld of LES, their application to complex separated �ows remains
an extremely challenging task, as shown by results and conclusions of recent workshops [4].
While not disregarding the need for further improvements of the subgrid models, one of the

key issues which justi�es due attention is the e�cient solution of the elliptic kernel arising
from the temporal discretization of the incompressible governing equations. In this frame, we
consider that, for �ow problems where geometry includes sharp edges of rectangular shapes,
no practical alternative exists, at least in the structured grid context, to the application of
multi-domain (MD) technique.
This approach allows to decouple the original problem in a set of two sub-problems, viz.

a sub-domain problem and an interface condition. The evident advantages of this procedure
lie with the easiness of the description and discretization of complex geometries, good grid
control, feasibility of parallel execution on multi-node computers, and, fundamentally the
possibility to work on simple sub-domains where fast elliptic solvers (FES) could be applied.
Moreover, this approach can be easily generalized to the treatment of non-Cartesian geometry,
applying the immersed boundary method [5], as shown by in-house testing [6], or re-casting
the problem in curvilinear co-ordinates, while maintaining the above-quoted advantages in
terms of e�cient implementation and execution.
Spectral MD approaches have been widely discussed in the recent literature and in this

respect we must mention the work of Patera [7] and the successive developments and appli-
cations of Henderson and Karniadakis [8]. In the �nite di�erence and �nite volume frame-
work, the application of the MD technique is less common, and we are not aware of any
such �uid dynamic oriented development (in the sense of LES or DNS). Part of the reasons
may be traced back to the di�culties associated with the application to the staggered vari-
ables unknowns arrangement, which is commonly employed for the numerical solution of the
incompressible Navier–Stokes equations in a �nite di�erence framework.
In the present work we discuss the construction of a non-overlapping domain decomposition

strategy for the elliptic kernel which extends the use of fast direct and iterative elliptic solvers
to any geometry consisting of an arbitrary collection of rectangular sub-domains. Emphasis is
laid on the interface problem formulation and to the related conceptual di�culties for those
Navier–Stokes solvers based on a staggered variables arrangement. While the approach has
been thought and tested in the LES frame, it remains, of course, equally promising in the
DNS domain. Applications to complex �ows are presented in the companion paper [9].
The article is organized as follows: in Section 2 the governing equations and the subgrid

scale model are brie�y recalled. Section 3 describes the numerical method, viz. the spatial and
temporal discretization in a fractional step procedure. Section 4 addresses the multi-domain
discretization of the elliptic kernel, both from theoretical and practical point of views. The
following Section 5 discusses the numerical solution of the elliptic problems arising from
the fractional step procedure. Finally, Section 6 reports a comparison of the performance
of several iterative solution strategies for geometrical con�gurations which are of relevance
in the �eld of LES and DNS. Implementation and performance on parallel architectures are
discussed. Conclusions are given in Section 7.
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2. GOVERNING EQUATIONS

Key of the LES approach is the separation of the di�erent scales, which is achieved applying
a �ltering operator, taking the form of a space �lter, expressed as a convolution integral

�ui(x; t)=
∫∫∫

V
G(x− �;�)ui(�; t) d� (1)

where � is the �lter width and V the computational domain. In the case of �nite di�erence
(FD) and �nite volume (FV) discretization G is usually taken to be the well known top hat
�lter [1]

G(x− �;�)=
{
1=� |x− �|6�=2
0 otherwise

(2)

The continuity and momentum equations in terms of the resolved (grid scales) variables
(denoted with an over bar) become

@ �ui
@xi

=0 (3)

@ �ui
@t
+
@ �ui �uj
@xj

+
1
�
@ �p
@xi
=
1
Re

@2 �ui
@xj@xj

− @�ij
@xj

+ fi (4)

where Re= �‘=� is the Reynolds number (� and ‘ being appropriate velocity and length
scales), and the contribution of the un-resolved scales (subgrid scales)

�ij ≡ uiuj − �ui �uj (5)

takes the form of a stress tensor (subgrid scale stress tensor, SGS) which must be modelled
to close the problem. It is well understood that the main role of subgrid scales at the level of
the resolved scales is to provide the necessary amount of dissipation [10]. In consequence, the
most commonly applied models rely on the concept of subgrid di�usivity. Separating subgrid
di�usivity in isotropic and anisotropic contributions and adding the isotropic part of �ij to the
pressure term, the anisotropic part takes the form

�ij − 1
3�kk�ij=−2�T �Sij (6)

with �Sij=1=2(@ui=@xj + @uj=@xi) the resolved rate of strain.
Di�erent subgrid models based on this approach can be found in literature [1], but the most

widely applied model remains the Smagorinsky model

�ij − 1
3�kk�ij=−2Cs��| �S| �Sij (7)

where �=(�x�y�z)1=3 is the �lter width, and | �S|=(2 �Sij �Sij)1=2 the magnitude of the resolved
rate of strain tensor.
In the case of wall bounded �ow, this model must be complemented by a van Driest-type

damping function [1], D=1−exp(z+=A+)3, with A+ =25, applied in the wall-normal direction
z, in order to impose the correct turbulence decrease towards the wall

�ij − 1
3�kk�ij=−2DCs��| �S| �Sij (8)
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The choice of the Smagorinsky model might appear non-optimal, in view of the current trend
towards application of scale-similar or mixed subgrid scale models [11, 12], and the well
known limitations of this model against the dynamic procedure [13]; however, its application
would be justi�ed in the present study, whose purpose is to demonstrate the capability of the
multi-domain approach to the LES of complex �ows and, ultimately, to practical applications.
In this optic, the aim is the prediction of low order turbulent moments at the minimal cost.
Under this point of view, it must be kept in mind that present tests [14], as well as current
literature [4, 15], point out that, in case of complex �ows and �nite di�erence implementation,
more advanced and expensive subgrid models o�er results which are not substantially better
than those obtained with the Smagorinsky model.

3. NUMERICAL METHOD

Following the standard pressure correction scheme [16], at each time level, we have decoupled
the velocity and pressure in a projection and correction step. In this procedure, the projection
step requires the solution of a Poisson equation for the pressure. Concerning the time-marching
procedure itself, it must be considered that the choice of size of time step for DNS and
LES simulations is ruled by accuracy requirements: numerical tests [17] have shown that the
Courant–Friedrich–Levy number (CFL)

�tc

( |ui|
�xi

)
max

(9)

must be kept smaller than 0.5–1.0 to avoid contamination of the results. Therefore, we con-
sidered that the extra complexity and extra cost introduced by an implicit time-marching
algorithm would not be justi�ed, and an explicit algorithm had to be preferred on ground of
its lower number of operations per grid point, easiness of its implementation of MD procedure
and its execution on parallel computers (see next paragraph). In this optic, the second-order
Adams Bashforth scheme is chosen to integrate the predicted velocity �eld, because it of-
fered the minimum requirements of memory storage and number of algebraic operations for
grid point. A comparison of the performance of di�erent high order schemes for the time
integration of the Navier–Stokes equations in a fractional step formulation can be found in
Reference [18].
Having re-de�ned the pressure as p=�, the semi-discrete form of Equation (4) takes the

form

�u∗
i − �uni
�t

=
3
2
�R
n
i − 1

2
�R
n−1
i − @ �pn

@xi
(10)

followed by

�un+1i − �u∗
i

�t
= − @(�p)

@xi
(11)

where the term R is given by

Ri ≡ −@ �ui �uj
@xj

+
1
Re

@2 �ui
@xj@xj

− @�ij
@xj

+ fi (12)
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and � �p≡ �pn+1 − �pn is the pressure correction. Taking the divergence of (11) leads to

@2� �p
@xj@xj

=
1
�t

@ �uj∗

@xj
(13)

which allows to compute �pn+1 and �un+1i through (11). Equation (13), closed by the appropriate
set of boundary conditions, constitutes, in the present formulation, the elliptic kernel.
The Adams Bashforth algorithms are limited to a CFL number

�tc

( | �ui|
�xi

)
max
60:35 (14)

while a more critical limit for the simulation of wall-bounded �ows is the corresponding
stability limit for the di�usivity operator, which for the present algorithm is

�
(
�tv
�x2i

)
max

60:1 (15)

This second limit would appear too constraining for attached �ows, but it is the experience
of the present authors [19] that, in the cases of blu� body separation, the need to resolve the
high velocity gradients both upstream and downstream of the corners causes a severe limit
on the advective step (due to the wall-normal advection term) which becomes stricter than
the di�usive one. It was then concluded that this di�usive limit was of minor importance for
the applications considered herein.
It can be remarked that the present stability limits are well below the aforequoted limits

[17], which ensures that the numerical errors will not degrade the theoretical accuracy of the
scheme. It is evident that, when the resolution of the inner wall layer is required, as it is
the case of wall-resolved LES, the stability limit for the di�usivity operator quickly becomes
much stricter than the advection-based CFL; however, we considered that the above discussed
advantages of the present choice made this limitation acceptable. As a matter of fact, it was
found that the present algorithm remains competitive, down to grids where the �rst inner point
is located at z+ ≈ 1. While this limit could appear unacceptable for low-Reynolds RANS, it
can easily accommodate the minimal requirement for resolved LES, which requires, for the
direction normal to the wall, three grid points to be located within the �rst 10 wall units [10].
A more detailed discussion of minimal grid sizes for LES will be presented in Reference [9].
All partial derivatives in Equations (10)–(13) are discretized with second-order accurate

centred formulae in a staggered grid arrangement, so that velocities are de�ned at cell faces
and pressure unknowns at cell centres (see Figure 1). Advantages and shortcomings of the
staggered formulation are well known and documented in great detail in standard textbooks
[20]; here, we only have to recall that its larger computational complexity is compensated by
the absence of velocity pressure odd–even decoupling.
The convective terms in (12) are discretized in a skew symmetric form according to the

Arakawa [21] formulation (which is energy and momentum preserving). As a matter of fact,
it is well established that second-order central formulae yield numerical errors lower than
those of any upwind-biased scheme of order up to 5 [22]; this conclusion has also been
con�rmed by a more recent study [23]. Therefore, in the case of simulation of �ow at low or
moderate Reynolds number, which is the case for the present investigation, it is worthwhile to
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Figure 1. Velocities and pressure variables locations in a staggered grid arrangement.

apply the second-order central scheme and to re�ne the grid to avoid the presence of aliasing
e�ects [14].
The discretization of (12) in the staggered grid approach is trivial and will be omitted

for sake of brevity; conversely, the discretization of Equation (13) in a complex geometry
environment, where the complexity refers to the presence of one or more blu� bodies of
rectangular shape, will be addressed in quite some detail in the following section.

4. THE MULTI-DOMAIN DISCRETIZATION OF THE ELLIPTIC KERNEL

As already mentioned in Section 3, and independent of the temporal discretization of the
convective term, all LES and DNS codes adopting a pressure correction scheme, require the
solution of one or more three-dimensional elliptic (Poisson or Helmholtz) equations with
a time varying right-hand side for a large number of time steps (typically O(10:000)) to
adequately collect the statistics. It is therefore self evident that the e�cient solution of these
systems, both in terms of speed and storage requirements, is one of the most pacing items
for the application of LES=DNS to turbulent �ows in more complex geometries.
For simple box-like geometries all research groups have traditionally resorted to the so-

called FES [24, 25], which are a family of direct methods employing fast Fourier transforma-
tion, cyclic reduction and Gaussian elimination. They can be shown to be optimal in terms
of speed as well as storage requirements, for those class of problems to which they can
be applied. Their drawback is precisely their limited range of application. The alternative is
represented by the multi-domain technique.
The basic idea of any MD approach is to decompose the physical domain � into a set of

sub-domains �i according to some criteria; following Reference [26] (for a more complete and
exhaustive discussion on the topic the reader is referred to the book of Quarteroni and Valli
[27]) we loosely divide them into overlapping or Schwarz domain decomposition methods
as opposed to non-overlapping domain decomposition methods, also commonly referred to as
sub-structuring or Schur complement methods.
In Schwarz methods the overall problem is typically solved by obtaining a solution in an

alternating way on each of the overlapping sub-domains using as boundary condition on the
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Figure 2. Multi-domain breakup of a backward facing step geometry.

internal overlapping boundaries the value obtained from a previous intermediary solution of
the neighbouring sub-domains problem until some overall convergence criterion is satis�ed.
The amount of overlap between the sub-domains guarantees the exchange of information
between the sub-domains and a�ects therefore strongly the convergence speed of the overall
iterative process (see Reference [27] for additional details). This is in contrast with the non-
overlapping methods where the exchange of information between the sub-domains solves is
established through the de�nition and resolution of an explicit interface problem. Thus, in the
sub-structuring approach the sub-domains are patched with each other (see Figure 2).
It can be shown that the two methods are more similar than it might be thought at �rst

glance; details about the convergence properties of the two formulations for elliptic kernels
can be found in Reference [27] and will be omitted. Here we simply wish to mention that, on
the basis of computational cost estimates provided in References [27–29], we have preferred
the Schur method over the Schwarz one.

4.1. The Schur complement method

In this work, and as far as we are aware for the �rst time in the �eld of DNS=LES, we
propose a non-overlapping domain decomposition technique based on the Schur complement
method, which extends the use of these solvers to any geometry that can be decomposed into
a collection of non-overlapping rectangular sub-domains [14, 19, 30]. The cost of the resulting
algorithm will be shown to be twice an elliptic solve on each of the sub-domains separately
(here and after referred to as problem PI), supplemented with one solve for the interface
unknowns (problem P	). Problem PI can be e�ciently solved on any parallel architecture
machine with the aforementioned FES.
Unlike the more widely adopted capacitance matrix method [31, 32], which also requires

two elliptic solves, but now on an enlarged box-like domain embedding the complex geometry,
the method we propose does not introduce any additional unknown and is naturally suited for
a parallel implementation.
For reasons of simplicity we shall restrict ourselves to the class of problems presenting at

least one homogeneous spatial direction; by doing so we reduce the complexity of the original
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three-dimensional problem to that pertaining to a set of decoupled two-dimensional problems.
The extension to fully three-dimensional problems is trivial.

4.2. Theoretical aspects

The discretization of (13) in a multi-domain formulation is straightforward. Let us begin
with some nomenclature. Let x� and x	 denote the solution vectors corresponding to the
sub-domains and to the interfaces; the former represents the numerical approximation of the
original problem de�ned in any of the rectangles whose collection adds up to the original
domain. In a collocated formulation the interface 	 is not well de�ned at discrete level (viz.
there are no unknowns on the boundaries separating two sub-domains). We thus de�ne 	 as
one (or more) layer of unknowns next to the boundary lines, which are therefore eliminated
from the sub-domain count. Obviously x=x� ∪x	 (see Figure 3).
For reasons of e�ciency we have used Fourier expansion of the unknowns and the right-

hand sides of (13), rewritten as �2�=f, in the homogeneous spanwise direction y, i.e.

�i; j; k =
Ny−1∑
m=0

�̂i;m; ke
2�Ijm=Ny ; fi; j; k =

Ny−1∑
m=0

f̂i;m; ke
2�Ijm=Ny (16)

where m and Ny are the wave number and the amount of grid points in the homogeneous
direction, respectively. By doing so, the original three-dimensional Poisson problem, whose
discretized form evaluated at point (i; j; k) reads

(
�2

�x2
+
�2

�y2
+
�2

�z2

)
�i; j; k =fi; j; k (17)

is reduced to a set of Ny=2 two-dimensional decoupled Helmholtz problems(
�2

�x2
+
�2

�z2
− 	m

)
�̂i;m; k = f̂i;m; k ; m=0; : : : ; Ny − 1 (18)

Γ1

Γ2

Ω1 Ω 2

3Ω

Figure 3. Example of domain decomposition: 3 sub-domains �1;�2 and �3
separated by 2 interfaces 	1 and 	2.
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which di�er from each other exclusively for the parameters

	m=
2
�2
y

[
1− cos

(
�(m+ 1)
Ny

)]
(19)

usually referred to as the Helmholtz entries. In Equations (17) and (18) � denotes a discrete
di�erence operator whose exact form is irrelevant to the present discussion. Note that because
of the symmetry of the Fourier transformed equations, we only need to solve Ny=2 problems.
If we order the unknowns in a domainwise fashion, followed by the interface unknowns,

and we apply block Gaussian elimination to the original system of equations arising from the
discretization, we �nd

Ax= b (20)

that is 


A1;1 : : : 0 A1; N+1 : : : A1; N+M
...

. . .
... : : : : : : : : :

0 : : : AN;N AN;N+1 : : : AN;N+M

0 0 0 SN+1; N+1 : : : SN+1; N+M

0 0 0 : : : : : : : : :

0 0 0 SN+M;N+1 : : : SN+M;N+M







x�1
: : :

x�N
x	1
: : :

x	M



=




b1

: : :

bN

b̃N+1

: : :

b̃N+M




(21)

where Ai; i is the matrix representing the discretization of the LHS of (13) in �i, N and M
the number of sub-domains and interfaces, and

Sij ≡ Aij −
N∑
k=1
AikA−1

kk Akj ∀i; j=N + 1; N +M (22)

b̃j ≡ bj −
N∑
k=1
AjkA−1

kk bk ∀j=N + 1; N +M (23)

The interface unknowns can be determined from the lower right sub-block of equations

Sx	 = b̃ (24)

that is, 

SN+1; N+1 : : : SN+1; N+M

: : : : : : : : :

SN+M;N+1 : : : SN+M;N+M






x	1
: : :

x	M


=



b̃N+1

: : :

b̃N+M


 (25)

The submatrix S is generally referred to as the Schur complement matrix. Note that the con-
nection between the sub-domain and interface unknowns, which is apparently lost, is embedded
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instead in the RHSs of (25). E�ectively, to construct these RHSs we have to determine the
factors A−1

kk bk , ∀k=1; : : : ; N which means solving one elliptic equation per sub-domain, since

xk =A−1
kk bk ⇐⇒ Akkxk = bk (26)

where Akk represents the restriction of the original discretized elliptic operator A to sub-domain
�k , applying homogeneous Dirichlet boundary conditions at its internal interface boundaries.
Once the solution on the interfaces x	 is computed, we can eliminate those unknowns from

system (21) simply bringing them to the RHSs.
To summarize the solution algorithm reduces to the following three step procedure:

1. Problem PI (part 1): solve an elliptic problem in each of the sub-domains �i ; i=1;
N separately, using the original boundary conditions at the external boundaries, homoge-
neous Dirichlet boundary conditions at the internal boundaries and its original RHSs bi.

2. Problem P	: assemble the RHSs of the interface problem using the step 1 values, and
solve the Schur complement problem.

3. Problem PI (part 2): solve an additional elliptic problem in each of the sub-domains �i
separately, using the original boundary conditions at the external boundaries, imposing
now x	 as Dirichlet boundary conditions at the interfaces and using the original RHSs bi.

Although at a �rst sight the overall cost of the elliptic kernel appears more than doubled (two
elliptic solves plus an interface problem of smaller size), this overhead is largely compensated
by the fact that this approach not only allows to recover the use of FES on rectangular domains
(Problem PI , i.e. steps 1 and 3), but also opens the way to parallel executions. Additionally,
in an iterative solution context, it provides the opportunity of relaxing the sti�ness of the
full scale original problem (which is reduced to a set of smaller size, better conditioned
sub-problems) and is intrinsically suited for zonal approaches and heterogeneous problems.

4.3. Practical aspects

Before describing the particular solution method we employ for the Schur complement system
(24), we wish to recall that our direct interest is its application in the �eld of LES and DNS.
Characteristic to these problems is the demand for an accurate solution of a (number of) �xed
elliptic equation(s) with varying RHSs for a large amount of time steps.
This suggests that it could be convenient to compute and store the inverse of the Schur

matrix S−1 through an LU-factorization procedure once and for all in a preprocessing step.
The overhead of the costly factorization process will indeed be easily amortized over the large
number of time steps for which we can re-use it through simple forward–backward substitution.
This involves however the explicit generation and storage of the Schur complement matrices
Sij, which are generally block dense matrices due to the �ll-in generated by the inverse
operators A−1

kk appearing in its de�nition (22).
For this reason it is often preferred to avoid the need for generating the Schur matrix

altogether in step 2 of the above solution algorithm. Indeed, with an iterative method the
explicit construction of S is replaced by a series of matrix vector multiplications at every time
step. From de�nition (22) we �nd that a matrix–vector multiplication Sijx involves determining
terms of the form z≡A−1

kk y for y≡Akjx, which is equivalent to �nding a solution of Akkz=y.
The last operation is nothing else than a decoupled elliptic solve on sub-domain �k .
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This however would greatly reduce the attractiveness of the overall Schur complement
algorithm since, instead of simply one decoupled elliptic solve on each of the sub-domains in
steps 1 and 3, an iterative solution of step 2 would additionally involve an extra amount of
elliptic solves on each of the sub-domains equal to the amount of iterations needed to converge
the Schur complement system. Even though fancy preconditioning methods are abundant in
the literature for the current situation (see f.e. References [28, 33, 34]), it is obvious that they
will never outperform the one-shot direct LU backward and forward substitution process as
proposed above.
We have therefore decided to explicitly generate and LU-factorize the Schur matrices, not

before having convincingly shown that the memory requirements they impose are indeed
realizable for their current application to LES and DNS of �ows with one statistically homo-
geneous direction.
We next discuss the Schur complement construction procedure. For reasons of convenience,

�exibility and the control it gives over accuracy, we have decided to construct the Schur matrix
S using an existing parallel iterative solver package Aztec [35] (the package is freely available
from the authors for research purposes), instead of using fast direct elliptic solvers on regular
geometries. This is a highly performant parallel iterative solver package for the solution of
linear systems that typically arise from a �nite di�erence or element discretization of partial
di�erential equations.
We recall that the two-dimensional Helmholtz problems to be solved on the complex domain

given in (18) di�er only in their value of the Helmholtz entry 	m. Also from Equation (19) it
follows that 	2m−1 = 	2m; ∀m=1; : : : ; (Ny−1)=2, implying that the diagonal contribution to the
discretized matrix due to the Helmholtz entry, and as such the discretized matrix corresponding
to (20), only change for every second Fourier mode. As a consequence also the corresponding
Schur complement matrices S(	m) will only di�er every second Fourier mode so that only
Ny=2 of them need to be constructed, LU-factorized and stored as part of a preprocessing
step.
If we merge all N	 interface unknowns together in one block we can symbolically rewrite

system matrix (21) in the following block form:


A11(	m) : : : 0 A1	
...

. . .
...

...

0 : : : ANN (	m) AN	

0 : : : 0 S(	m)







x�1
...

x�N
x	



=




b1
...

bN

b̃	




(27)

where

S(	m) = A		(	m)−
N∑
k=1
A	kA−1

kk (	m)Ak	 (28)

b̃	 = b	 −
N∑
k=1
A	kA−1

kk (	m)bk (29)

Here, the o�-diagonal block entries A	k and Ak	 are independent of the Fourier mode and are
very sparse matrices.
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We then construct each of the S(	m)s Schur complement matrices in a columnwise fashion
as follows using expression (28):

column j of S(	m) = S(	m):ej = A		(	m):ej −
N∑
k=1
A	kA−1

kk (	m)Ak	:ej (30)

where ej is a (N	 × 1) unit column vector with only zero entries except for unit entry at its
jth row. The Ak	:ej= fj part is computed using a sparse parallel matrix–vector product. Then,
since A−1

kk (	m)fj=xj ⇐⇒ Akk(	m)xj= fj we can obtain xj through a parallel iterative solve
with RHS fj. This is followed by an additional sparse parallel matrix–vector product A	kxj
before adding the result of another sparse parallel matrix–vector product A		(	m):ej to obtain
�nally the jth column of S(	m). This is repeated for each of the N	 columns of S(	m).
Using a parallel iterative solver which employs double precision reals in this preparation

phase allows the control over the accuracy of the Schur matrix construction and at the same
time is a convenient way to distribute in parallel the cost over all processors, even though
the latter factor is not of primary importance. In fact previous attempts using single preci-
sion fast direct elliptic solvers for the Akk(	m)xj= fj solves in the Schur complement matrix
construction phase were found to su�er from a lack of accuracy in the overall Schur comple-
ment solution algorithm for certain grids and sub-domain con�gurations and were therefore
dismissed for reasons of inconsistency. ILU-preconditioned restarted GMRES in combination
with a very strict stopping criterion is invariably used in this Schur construction phase for
reasons of stability and accuracy.
Subsequently, the Schur matrices are LU-factorized once and for all using the dedicated

Lapack subroutine DGETRF and stored in memory. Here a problem arises however w.r.t. the
Schur complement matrix S corresponding to the �rst Fourier mode 	0 = 0 which is singular
as we show next.
We know that the discretized two-dimensional Poisson matrix A(	0), which is accompanied

by a combination of Neumann and periodic boundary conditions, is singular. Furthermore,
from the equivalence of the system matrices (21) and (27) it follows that:

|A(	0)|= |A11(	0)| : |A22(	0)| : : : : : |ANN (	0)| : |S(	0)| (31)

where |:| denotes the matrix determinant. Now, each of the Aii block matrices represents the
discretization of a Poisson matrix on sub-domain �i with Dirichlet boundary conditions on
its internal boundaries and is therefore non-singular. As a consequence from relation (31) we
therefore �nd that S(	0) inherits the singularity. Therefore, any LU-factorization attempt of
the original S(	0) matrix will break down due to a zero pivot in the last elimination step.
Recall that this singularity is linked to the indeterminacy of the pressure solution, i.e. if �p

is a solution then for every constant C also �p+C will be a valid solution. And the existence
of a solution is guaranteed by satisfaction of the compatibility condition by the RHSs. We
have cured for the singularity in the present study by increasing the diagonal dominance of
the A		(	0) submatrix in Equation (28) by replacing its upper-left component (A		)1;1 with
3:(A		)1;1. This increases the diagonal dominance of the system matrix and therefore avoids
the singularity and breakdown of the LU-factorization described above. Note that we are
allowed to apply this modi�cation since it can be shown to be equivalent with choosing the
solution of the one-parameter family �p+ C for which ( �p		)1 = (x	)1 =0.
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4.4. Feasibility

We next discuss the storage requirements of the LU-factorization to check whether the
approach is feasible in practice.
From its de�nition (25) we see that the resulting Schur complement matrices S are (N	×N	)

matrices, where N	 is the total amount of unknowns that are located on the complete set of
interfaces. To have an idea of the size of the interface problem let us take the straining example
of a DNS calculation of the �ow over a backward-facing step as described in Reference [36].
If we break up the domain into 3 sub-domains as schematically shown in Figure 3, separated
by 2 interfaces, we �nd that for the most expensive grid they used we obtain a total of
N	 =672 interface unknowns. The storage for the Schur complement matrix then adds up to
N 2	 =0:45 Mega words per two-dimensional problem. For the full three-dimensional problem
we have to store Ny=2= 64

2 =32 of those LU-decompositions which lead us to a total of 14.5
Mega words.
Note that we did not exploit possible zero-block entries within the Schur complement

matrices associated with the above example through a sparse storage scheme. Also, one could
further reduce the storage cost by a factor of two by applying a co-ordinate transformation
which symmetrizes the discretized pressure-Poisson equations (18) and therefore would only
necessitate storing its upper triangular factor U instead of both its L and U factor. Additionally,
one can also choose to only treat some of the worst conditioned Fourier modes with the Schur
complement strategy and all others with a full iterative parallel solver as we will elaborate
further in Section 5. Finally, in a distributed memory parallel environment we can distribute
the storage load over the di�erent available processors.
The above clearly demonstrates the feasibility of the approach, even for DNS purposes,

and validates therefore our proposal for a direct solution of the Schur complement interface
problems P	.

5. LINEAR SYSTEM SOLUTION

The previous section has outlined, in detail, the essence of the multi-domain discretization of
the elliptic kernel, in terms of a pair of decoupled problems: the interior unknowns problem
PI and the interface one P	. Several issues related to the latter problem have already been
discussed in Section 4.3; this section concentrates instead on problem PI .
As anticipated, problem PI consists of a set of decoupled, on a sub-domain basis, elliptic

problems which can be solved by either direct or iterative methods, as discussed in the
following sections.

5.1. Direct methods

With the above technology we have reduced the elliptic kernel to a set of elliptic equations
in simple rectangular geometries. For those geometries, in the context of low order methods,
we may pro�t from the developments carried out in the 1970s concerning the so-called FES
[24, 25, 37, 38].
These are a family of direct solvers which employ various combinations of the fast Fourier

transform (FFT), the cyclic reduction (CR) algorithm and one-dimensional Gaussian
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elimination to achieve a close-to-optimal operation count of order O(N logN ), where N is the
total amount of grid points (in 3D sense). Also from a memory point of view they are highly
optimal requiring the storage of less than N words. These solvers come in slightly di�erent
�avours in terms of the choice of the underlying grid (staggered vs non-staggered), boundary
condition implementation, �exibility of the grid size and grid non-uniformity and the details
of the actual underlying algorithm. For a good introduction to the various combinations of
the FFT and CR algorithms typically employed we refer the reader to a study by Wilhelmson
and Ericksen [38], which also presents a detailed operation count analysis of these solvers.
The high speed that these solvers attain intrinsically relies on the exploitation of the regu-
larity of the underlying problem. This limits however their applicability to the solution of
the Poisson equation in box-like geometries. Uniform grid spacing is required in all spatial
directions where the FFT algorithm is applied in contrast to the CR algorithm, which allows
for non-uniformity of the grid.
For problems where grid non-uniformity is required in two directions (say the streamwise

as well as the wall-normal directions) the above set of solvers no longer applies and we
resort to the fast solver for general separable elliptic equations BLKTRI as developed by
Swarztrauber [37].

5.2. Iterative methods

In order to be able to assess the performance of the Schur complement solution strategy against
other existing methods, we have constructed an iterative solver which does not use any multi-
domain strategy, i.e. it solves the elliptic problem as such, on the whole computational domain.
Starting from the geometric con�guration, we �rst assemble the matrix coe�cients stemming
from the spatial discretization, using a sparse distributed storage format. The resulting sys-
tem is then solved with the state-of-the-art parallel library Aztec [35], which is speci�cally
designed for the solution of large-scale linear systems. The library contains a wide sample
of commonly applied Krylov subspace iterative solvers such as the conjugate gradients (CG)
and the restarted generalized minimum residual method (GMRES) together with a large vari-
ety of preconditioning methods such as incomplete LU (ILU) or Cholesky (IC) factorization
methods amongst other choices. The package is speci�cally designed for use with parallel
distributed memory architectures and uses the message-passing interface (MPI) [39] to handle
interprocessor communication. The di�erent (sparse) BLAS libraries are embedded for reasons
of portability and performance.
For a good introduction to the theory of preconditioned iterative methods with an emphasis

on Krylov sub-space methods we refer the reader to Reference [40], whereas a more complete
reference including issues related to its parallel implementation can be found in the book of
Saad [41]. The major computational kernels of Krylov sub-space based iterative methods
consist of

• preconditioner application Pu= v,
• sparse matrix–vector products Ax=y,
• vector updates x=y + 
z,
• inner products x=ytz.

We are not concerned with the cost related to the generation of the preconditioner itself since
it can be amortized over its repeated use for di�erent RHSs. The e�ect of the preconditioning
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operation is to improve the condition number of the discretized matrix system such as to
reduce the amount of iterations needed for convergence. On the other hand, the application of
the preconditioning increases the cost of the procedure per iteration, such that a good balance
between quality and complexity has to be found.
In the current work we shall exclusively employ Saad’s ILUT(�ll,
) preconditioner [42]

which uses two criteria for determining the �ll-in in the resulting approximate factorizations.
Fill-in relates to the generation of non-zero entries in locations which were originally zero and
were therefore not stored in the sparse storage matrix representation. For e.g. �ll = 1:5 requires
that the ILUT factors contain no more than approximately 1.5 times the number of non-zeros
of the original matrix such that for �ll = 0 no additional �ll-in beyond the non-zero structure
of the original matrix is allowed. Additionally ILUT drops all elements in the resulting factors
whose absolute value is less than 
. This is a class of generally robust preconditioners which
are commonly used in combination with GMRES for the solution of non-symmetric linear
systems.
In a parallel context, the sparse linear system matrix is logically distributed over the proces-

sors. This is done on a row-wise basis. The accompanying vector components are allocated to
the same processor with the same ordering. In the current implementation this distribution is
induced by the multi-domain decomposition of the computational geometry. It is straightfor-
ward to de�ne a sub-domain to processor mapping, so that all matrix rows corresponding to
unknowns within a sub-domain are retained in the local submatrix of the processor to which
this sub-domain is mapped. A further local reordering of the row indices may be performed
in order to optimize MPI communication.
As a consequence of the distribution of the system matrix and accordingly all vectors over

the processors, most of the major computational kernels of Krylov iterative solvers mentioned
above, viz. matrix–vector products, preconditioning operators and inner products require MPI
communication across processors and will therefore in�uence the parallel performance of the
procedure. Vector updates on the other hand can be fully locally computed.
A parallel extension of the ILUT set of preconditioners introduced above is achieved by

using them in a domain decomposition framework. Either the ILUT(�ll, 
) strategy is applied
strictly to the submatrix attributed to the local processor (zero overlap) or alternatively some
overlap between sub-domains can be allowed by applying the ILUT(�ll, 
) strategy to the local
submatrix which is recursively augmented by the rows of external unknowns which appear
in the discretization stencil of the previous version of the augmented matrix system. This
localization of the preconditioner will negatively in�uence the ability of the preconditioning
to reduce the condition number of the global preconditioned system, but it allows some control
over the amount of MPI communication involved in the application of the preconditioning
operator which might be more crucial from a cost point of view than limiting the amount of
iterations for convergence.
As in the case of the Schur complement method we will apply this parallel iterative solver

on each of the two-dimensional decoupled Helmholtz equations (18) that resulted from the
Fourier expansion of the originally three-dimensional pressure-Poisson equation (17).

5.3. Hybrid methods

As already anticipated in Section 4.2 the Schur complement method can be an e�ective
manner for reducing the sti�ness of a multi-domain problem to the one which pertains to the
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decoupled sub-domain problems. Thus, to check the e�ectiveness of this opportunity we have
also considered the possibility of solving problem PI with the previously introduced Aztec
iterative solver.
Although quantitative cost estimates could be given both for the direct and iterative ap-

proaches, we have preferred to assess their relative performance in situ, that is exactly on the
same multiple grid system for which LES results will be provided in the companion paper [9].

6. PERFORMANCE EVALUATION

In this section we compare the performance of the di�erent pressure-Poisson solvers that were
implemented as part of the current study. They are summarized in Table I.
First of all, we have the fast direct Poisson solver discussed in Section 5.1 and applicable to

grids which can be stretched in both streamwise and wall-normal directions (DIR2STR). We
have seen in Section 4 that the above solver can be exploited in the framework of the Schur
complement method to perform the decoupled sub-domain solves that occur in steps 1 and 3
of the algorithm. We shall refer to the implementation of this solver combination as SCMDIR.
As already mentioned, the Schur complement method could also be an e�ective manner for
reducing the sti�ness of a multi-domain problem to that of the decoupled sub-domain prob-
lems. To test this hypothesis a second Schur complement solver option (SCMITER) was
implemented using the previously introduced Aztec iterative solver in steps 1 and 3 for the
resolution of the decoupled sub-domain problems instead of the fast direct solver. The imple-
mentation of the parallel iterative Aztec solver previously introduced in Section 5.2 will be
referred to as ITERPAR. Recall that this solves the multi-domain Poisson linear system with-
out any resort to Schur complement strategies. As a result the block matrices corresponding
to the respective sub-domains remain fully coupled.
Finally a solver option combining SCMDIR and ITERPAR was implemented. Recalling

the Fourier expansion in the spanwise direction of the originally three-dimensional pressure-
Poisson problem into a set of two-dimensional Helmholtz problems which depend on a
Helmholtz factor 	m; ∀m=0; : : : ; ny− 1 as described by Equations (18) and (19), this solver
option allows to select a Fourier mode m∗ such that all modes with m6m∗ will be solved
with SCMDIR, and the remaining ones with ITERPAR. This is based on the observation that
a straightforward iterative solver procedure will have a tough job converging the Helmholtz
problems corresponding to the ill-conditioned lowest wave number Fourier modes, whereas the
increasing diagonal dominance of the discretized matrix generated by the Helmholtz factors
	m associated with higher wave number Fourier modes will quickly improve the condition
number of the underlying matrix and therefore render an iterative procedure more opportune.
This solver combination will be referred to as SCMFLEX.

Table I. Summary of implemented Poisson solver options.

DIR2STR Fast direct single domain (2D stretching)
SCMDIR Schur compl. multi-domain + DIR2STR sub-domain solves
SCMITER Schur compl. multi-domain + iterative sub-domain solves
ITERPAR Plain parallel preconditioned iterative multi-domain
SCMFLEX Flexible combination of SCMITER and ITERPAR
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The performance tests will be done both in a serial and a parallel context. All parallel
tests were done on an 8 processor symmetric multi-processor Sun HPC 3500 shared memory
machine consisting of eight 400MHz UltraSPARC II processors with 8Gb of shared memory
and a so-called 2:6 Gb=s Gigaplane system interconnect running Solaris 2.7 and Sun MPI.
Primary cache consists of 16 Kb instruction and 16 Kb data on chip, whereas the secondary
external cache is 8Mb. The nominal peak performance is 6:4G�ops (400MHz×8 processors×2
�ops per cycle). We are well aware that this machine is, presently, being out-moded by the
current trend towards PC-based clusters, but we consider the number of processors employed
su�cient to assess the behaviour of present algorithms in parallel environments, while quoted
CPU values remain a valid basis of comparison for performance of di�erent algorithms tested
herein. To avoid drawing conclusions from a set of well-de�ned theoretical test cases which
are not necessarily relevant for our current interest in LES of complex turbulent �ows we
have opted to do the performance measurements on real-life large-eddy simulations for which
we will present the actual statistical results in the companion paper [9].

6.1. Single domain channel grid

Before determining the performance of the respective Poisson solution methods in a multi-
domain context we �rst compare some of them on a grid used for single domain wall-resolved
fully developed turbulent channel calculations. The regularity of the box-like geometry and
uniformity of the grid in the streamwise and spanwise directions allows to apply directly,
without resorting to any Schur complement strategy, the family of so-called fast direct Poisson
solvers here represented by DIR2STR. As mentioned, the solver allows for grid non-uniformity
in two directions (but one would be enough in this particular case) and sequentially applies fast
Fourier transformation, cyclic reduction and Gaussian elimination, with an optimal operation
count. The run time comparisons are obtained on (nx; ny; nz)= (64; 128; 64) grid, amounting
to 524 288 points in the three-dimensional sense, whereas each of the 128 two-dimensional
Helmholtz problems corresponds to an elliptic problem of size 64× 64=4096. The timings
were obtained by advancing the code over 100 time steps also making sure that the �ow
�eld was in the regime where statistical sampling could be started to guarantee the physical
correctness of the �ow.
In Table II, we present two separate timings for this case. First of all the timings of the

Poisson solver part, referred to hereafter as Poisson, which includes all contributions due to
the pre- and post-processing involved in the application of the FFT and IFFT algorithms,
naturally the solution of the Poisson equation itself, as well as the �nal update of the pressure
correction de�ned by Equation (13) and the imposition of boundary conditions on the newly
computed pressure �eld. The second timer, referred to hereafter as parallel, presents the
timings of the remaining part of the LES solver around the pressure-Poisson solution part,

Table II. Single domain (64; 128; 64) grid channel timings.

Poisson Parallel Total LES Poisson (%)

DIR2STR 2 min 14 s 2 min 36 s 4 min 50 s 46
SCMDIR 4 min 22 s 2 min 36 s 6 min 58 s 63
ITERPAR 3 min 52 s 2 min 36 s 6 min 28 s 60
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i.e. the explicit time-advancement part, including the dynamic evaluation of the time step,
the repeated application of boundary conditions, as well as the run-time evaluation of various
statistical quantities. All these tasks are independent on a sub-domain basis except, of course,
the boundary condition part, and are therefore inherently parallel. For reasons of convenience
the SGS model was switched o� altogether during all the timing measurements even though
this task could be included in the parallel timer part since it is computed on a sub-domain
basis. This should be taken into account when relating the Poisson timer to the timings of
the overall LES solver (as a guideline, the Smagorinsky SGS model will typically increase
the cost of the complete LES solver by 20–30%). The sum of both timers is included as
well and corresponds to the full run-time performance of the LES code (minus the SGS
contribution), excluding only the cost related to pre-processing steps, such as input related to
the grid de�nition and initial conditions, as well as occasional output of intermediary result
and restart �les. Finally, in the last column the cost of the Poisson solve is related to the
total cost of the LES procedure. To test solver option SCMDIR for the current single domain
grid we arti�cially de�ned a Schur interface 	 at the connecting periodic streamwise out�ow
boundary. The corresponding timings have been included in Table II. They nicely demonstrate
the doubling of the Poisson solution time as suggested by the Schur complement algorithm. It
was found that for the current size of the Schur interface corresponding to n	 =64 unknowns
the cost of the LU back-substitution phase remains invisible. Finally, Table II includes the
timings of solver option ITERPAR for the current single domain grid. The iterative solver
selected is the restarted GMRES in combination with Saad’s ILUT(
, �ll) preconditioner with
a dual dropping strategy, where 
=1:0e − 5 and �ll=4:0. The restart value was set to 40.
Lowering the initial residual by a factor 5:0e−3 was found to be su�cient as stopping criterion
to obtain good accuracy. It was observed that for the current choice of the preconditioner
typically every Fourier mode m converged in 1 iteration except for the lowest wave number
which needed 2. This indicates the excellent quality of the preconditioner for the current case.
Allowing no �ll-in nor dropping of small entries in the ILUT preconditioner, the Poisson run-
time was increased by 13%.
We conclude that, for the current single domain channel grid, the fast direct solver clearly

outperforms the preconditioned iterative solver, despite the excellent convergence characteris-
tics obtained with the ILUT preconditioner. This further motivates our search to extend the
use of fast direct Poisson solvers to a multi-domain context.

6.2. Multi-domain channel grid

In order to study the relative performance of the di�erent Poisson solver methods in a parallel
context the previous single domain resolved channel grid was divided into 8 equally sized
sub-domains as shown in the (x; z)-plane representation of Figure 4. On the same �gure
the de�nition of all Schur interfaces, which allow the decoupling along the sub-domains, is
indicated, as well as the numbering of the sub-domains which decides their distribution over
the processors. This multi-domain breakup leads to a grid size of (nx; ny; nz)= (16; 128; 32)
per sub-domain and allows a perfect load balancing in the case of a 1, 2, 4 or 8 processor
parallel calculation. This amounts to 65 536 grid points in a three-dimensional sense, whereas
each of the 128 two-dimensional Helmholtz problems corresponds to an elliptic problem of
relatively small size 16× 32=512 per sub-domain. The total amount of interface unknowns
n	 introduced this way amounts to 316 for each of the two-dimensional Helmholtz problems
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Figure 4. Multi-domain channel breakup into 8 equally sized sub-domains including
de�nition of Schur interfaces.

Table III. Multi-domain 8× (16; 128; 32) grid channel timings for ITERPAR.
No. of processors Poisson Parallel

1 3 min 56 s 3 min 6 s
2 2 min 41 s 1 min 30 s
4 1 min 36 s 43 s
8 1 min 14 s 22 s
8 processor parallel speedup 3.2 8.4
8 processor parallel e�ciency 40% 105%

that result from Fourier decomposing the three-dimensional pressure-Poisson problem in the
periodic spanwise direction. The extremely low ratio of inner unknowns to Schur interface
unknowns equaling 12.96 for the single processor and barely 1.6 for the 8 processor calculation
will clearly have a signi�cant negative e�ect on the ratio of interprocessor data communication
to true computation inside each of the sub-domains, as well as on the cost of the sequentially
implemented LU back-substitution in step 2 compared to the parallelized steps 1 and 3 of the
Schur complement algorithm. As such, this case represents a very demanding test in terms of
achieving a good parallel speedup and e�ciency. The parallel performance measurements were
obtained on 1, 2, 4 and 8 processors of an 8 processor Sun E3500 shared memory architecture.
Again, it could not be guaranteed that all other processors were free of other tasks during the
CPU timings. The e�ect of this could potentially be bigger than for the serial runs in light
of the increased data-transfer between the processors; nevertheless, it was not judged as too
important. Again, all timings were typically repeated to �lter out possible discrepancies linked
to a variable processor occupation. The timings were obtained by advancing the code over
100 time steps, also making sure the �ow �eld was in the regime where statistical sampling
could be started to guarantee the physical correctness of the �ow.
We �rst present in Table III the results obtained for the ITERPAR solver. As in the single

domain case, the iterative solver selected is restarted GMRES in combination with an ILUT(
,
�ll) type of preconditioner with a dual dropping strategy, where 
=1:0E − 5 and �ll=4:0.
No overlapping between sub-domains was allowed in the construction of the preconditioner,
since it was found not to bring any improvements in run-time. The restart value was set
to 40. Lowering the initial residual by a factor 5:0e − 3 was again found to be su�cient
as stopping criterion to obtain good accuracy. The parallel speedup and e�ciency of the
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Table IV. Further investigation into ITERPAR solver parallel behaviour.

No. of procs Total no. of iters Total time No. of iters=s No. of iters=s=No. of procs

1 12 878 205 62 62
2 23 528 146 161 80
4 23 528 88 266 66
8 23 828 63 378 47

LES code excluding the Poisson solution part is perfect, indicating that the cost of the MPI
interprocessor data communication due to boundary exchanges is comparable to the cost of
the boundary exchanges in a single processor calculation. Here, we adopted the usual notions
of parallel speedup S(n; P) and parallel e�ciency E(n; P)

S(n; P)≡ T (n; 1)
T (n; P)

(32)

E(n; P)≡ S(n; P)
P

=
T (n; 1)
PT (n; P)

(33)

where n denotes the problem size, P the amount of processors involved, T (n; 1) and T (n; P)
the execution times on 1 and P processors respectively.
The speedup of the ITERPAR solver shows a much less favourable picture. This can be, �rst

of all, attributed to the e�ect the parallelization has on the quality of the preconditioner. It was
observed that for the current choice of preconditioner for the single processor run, typically
every two-dimensional problem converged in 1 iteration except for the lowest wave number
which needed 2. This again con�rms the excellent quality of the current preconditioner. This
was no longer the case for the multiple processor runs which typically took 6 iterations for the
lowest frequency two-dimensional problem to converge, gradually going down to 1 iteration
for the highest frequency modes. This deterioration in the preconditioning e�ectiveness is
linked to the localized character of the constructed preconditioner in which no overlap between
sub-domains was allowed. Another factor decreasing the parallel e�ciency is of course the
MPI interprocessor data communication associated with the non-local computational kernels
appearing in the GMRES iterations, viz. the matrix–vector multiplications, inner products and
the application of the preconditioner.
To investigate both of the above arguments more accurately we monitored the total amount

of iterations over the 100 time steps and over all two-dimensional Helmholtz problems for
each of the runs (1; 2; 4; 8 processors), as well as the raw timings of the Aztec GMRES
solver call. They follow below, in the second and third column of Table IV. From the second
column we can clearly observe the deterioration in the preconditioner e�ectiveness as soon
as more than 1 processor is involved. Also, since the total amount of iterations for 2 and
4 processors is the same, the timings from column 3 should in principle di�er by a factor
of 2 in the absence of any MPI communication. This is not the case, putting into evidence
the cost related to increased MPI communications. It is remarked that due to the sub-domain
ordering given in Figure 4, in conjunction with the current non-overlapping preconditioner,
the preconditioners constructed in the case of 2 and 4 processors should indeed be exactly the
same and consequently also the amount of iterations for convergence for 2 and 4 processors.
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Table V. Multi-domain 8× (16; 128; 32) grid channel timings for SCMDIR.
No. of procs Poisson LU backs Net Poisson Parallel

1 5 min 8 s 1 min 8 s 3 min 50 s 3 min 6 s
2 3 min 17 s 1 min 8 s 1 min 59 s 1 min 30 s
4 2 min 17 s 1 min 8 s 1 min 1 s 44 s
8 1 min 54 s 1 min 10 s 38 s 22 s
S(n; 8) 2.7 6.1 8.4
E(n; 8) 34% 76% 105%

No. of procs Schur step 1 Schur step 2 Schur step 3

1 1 min 46 s 1 min 18 s 1 min 54 s
2 53 s 1 min 18 s 1 min 1 s
4 26 s 1 min 16 s 32 s
8 14 s 1 min 16 s 20 s
S(n; 8) 7.6 5.7
E(n; 8) 95% 71%

The combined in�uence of the MPI cost and the worsening of the preconditioner is nicely
seen in the gradual decrease in the amount of iterations per second per processor for 2; 4 and
8 processors. Somehow strange however is the low value 62 obtained for the single processor
calculation. Most likely this is due to other GMRES related cost factors. The almost immediate
convergence (1–2 iterations) may well prevent a good sustained �op rate for the underlying
GMRES algorithm.
We proceed presenting the timing results for the SCMDIR solver for 1; 2; 4 and 8 processors

on the current multi-domain arrangement in Table V above. Note that in Table V the Schur
step 1, 2 and 3 timers correspond to the complete implementation of the di�erent steps inside
the Schur complement algorithm, so including all pre- and post-processing steps, such as e.g.
the generation of the RHSs, which might be involved in the actual implementation. This is in
contrast to the LU backs timer which times only the raw call to the machine-optimized Lapack
LU back-substitution routine DGETRS. As a consequence, we logically �nd that Schur step
2¿LU backs and Poisson¿Schur step 1+2+3. This has to be kept in mind when observing
the timings. As explained before, the second step of the Schur complement algorithm has not
been parallelized since it was expected that the LU back-substitution cost would be negligible
w.r.t. the cost of the rest of the algorithm and as such would not be worth parallelizing. So,
in the current implementation every processor performs the full LU back-substitution task for
each of the two-dimensional Fourier modes. The above timings reveal, however, that for the
current problem the overall cost of the LU back-substitution in step 2 of the algorithm is of
the same order of magnitude as the cost of the direct decoupled sub-domain solves in steps 1
and 3 of the algorithm for the calculation on a single processor. Therefore, the serial fraction
of the algorithm is certainly non-negligible for this case. As a result of Amdahl’s law which
de�nes the following maximal limit for the parallel speedup:

S(n; P)6
1


+ (1− 
)=P6
1



(34)
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Table VI. Multi-domain 8× (16; 128; 32) grid channel timing comparisons.
No. of procs ITERPAR Poisson SCMDIR Poisson SCMDIR theor.

1 3 min 56 s 5 min 8 s 5 min 8 s
2 2 min 41 s 3 min 17 s 2 min 38 s
4 1 min 36 s 2 min 17 s 1 min 21 s
8 1 min 14 s 1 min 54 s 48 s
S(n; 8) 3.2 2.7 6.4
E(n; 8) 40% 34% 80%

where 06
61 refers to the fraction of the computation which is performed sequentially, this
inhibits dramatically an e�cient parallelization of the overall algorithm as is evidenced by the
low parallel e�ciency result of the Poisson timer. This situation could however be e�ectively
remedied for by parallelizing w.r.t. the spanwise direction this step of the algorithm. Instead
of solving the Schur interface problem for all Fourier modes bluntly on each processor one
could distribute the Ny decoupled Schur interface problems evenly over all processors at the
small extra MPI communication cost linked to distributing the Schur interface solution back
to all processors.
Based on these comments, we concentrate on the parallel performance of the algorithm

excluding the LU back-substitution step as represented by the net Poisson timer in the above
table. This is simply de�ned as the Poisson timer minus the Schur step 2 timer. This shows
a much more favourable picture nevertheless not attaining completely satisfactory values,
mainly because of a reduced parallel e�ciency in step 3 of the algorithm. The main MPI
communication overhead in step 3 is linked to the generation of its RHS, which requires a
matrix–vector product of a sparse distributed matrix with a dense interface solution vector.
The reduced e�ciency may be linked to the current extremely low ratio of inner unknowns
relative to Schur interface unknowns.
We can also derive ideal theoretical timings of the complete Poisson solution step in case

the LU back-substitution phase would have been parallelized as described above. For this we
simply add the (serial cost of Schur step 2)=(amount of processors) to the net Poisson part.
The comparison of this theoretical result with the previously obtained ITERPAR and SCMDIR
timings is presented in Table VI. We conclude that, for the current grid, the ITERPAR solver
outperforms the Schur solvers in case of a single processor calculation. Recall, however,
that for a single processor calculation for the current rectangular geometry, one can simply
apply the fast direct solvers on a single domain without resorting to Schur complement multi-
domain breakup strategies. So the interest in a multi-domain breakup is directly coupled to
the intention for a parallel computation for the current geometry. From the multiple processor
timings we conclude that, for the current range of processors, the ITERPAR and SCMDIR
outperform the other depending on whether the LU back-substitution step is parallelized or
not. The much higher parallel e�ciency obtained with the theoretical SCMDIR suggests that
its better performance than ITERPAR will only increase with the amount of processors.
Finally, we present in Table VII the performance results for the SCMITER solver for 1, 2,

4 and 8 processors on the current multi-domain arrangement. The parallel e�ciency of Schur
step 1 and 3 attains much lower values than the ones for the SCMDIR case. This is quite
surprising, in view of the explicit decoupling achieved by the Schur complement algorithm.
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Table VII. Multi-domain 8× (16; 128; 32) grid channel timings for SCMITER.
No. of procs Poisson LU backs Net Poisson Parallel

1 8 min 26 s 1 min 15 s 6 min 58 s 3 min 7 s
2 5 min 21 s 1 min 12 s 3 min 56 s 1 min 29 s
4 3 min 42 s 1 min 11 s 2 min 23 s 44 s
8 3 min 10 s 1 min 11 s 1 min 52 s 23 s
S(n; 8) 2.7 3.7 8.1
E(n; 8) 33% 47% 102%

No. of procs Schur step 1 Schur step 2 Schur step 3

1 3 min 26 s 1 min 28 s 3 min 22 s
2 1 min 54 s 1 min 25 s 1 min 57 s
4 1 min 7 s 1 min 19 s 1 min 12 s
8 51 s 1 min 18 s 58 s
S(n; 8) 4.0 3.5
E(n; 8) 50% 44%

However, in its present implementation the decoupled sub-domain problems are gathered in
one big system matrix in Aztec distributed sparse storage format which is solved via parallel
GMRES. This e�ectively means that steps like checking the current residual (globally over
all processors) and the Householder orthogonalization process will still involve a fair deal of
MPI communication, despite the decoupling.
Besides the rather poor parallel e�ciency also the anticipated positive e�ect an explicit de-

coupling would have on the quality of the preconditioner is not very pronounced. Comparing
the Schur step 1 column of Table VII with the ITERPAR Poisson timer of Table III, one
observes only a modest improvement. This is however in�uenced greatly by the more restric-
tive stopping criterion that was applied in the current case, viz. 1:0e − 5 instead of 5:0e − 3
used in the ITERPAR case. This increased tolerance was found necessary for accuracy in the
current 3-stage Schur complement solution procedure where the accuracy of each step also
depends on the input it receives from the previous step. Then again, as we have discussed
before, the preconditioning operator in the ITERPAR case was already very performant such
that there was no room for major improvement in the �rst place.

6.3. Multi-domain backward-facing step grid

In the current section once more we use a test case for which the LES statistical results will
be presented in full detail in the companion paper [9]. The details on the grid design will
also be given elsewhere [9], but for the current purposes it is su�cient to refer to Table VIII
in combination with Figure 5 to summarize its multi-domain composition. From that table it
can be seen that the total amount of grid points sum up to 405 696 in a three-dimensional
sense, whereas each of the 32 two-dimensional Helmholtz problems correspond to an elliptic
problem over 12 678 unknowns. The total amount of interface unknowns n	 introduced this
way amounts to 207 for each of the two-dimensional Helmholtz problems that result from
Fourier decomposing the three-dimensional pressure-Poisson problem in the periodic spanwise
direction. In the current case the ratio of inner unknowns per sub-domain to Schur interface
unknowns varies from 4.0 for the smallest sub-domain �3 to 18.8 for the largest �5, which is
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Table VIII. Computational domain sizes and grid de�nition of 5
sub-domain BFS geometry.

Sub-domain Lx Ly Lz Nx Ny Nz

�1 9 4 1.13 90 32 21
�2 9 4 5 90 32 32
�3 2 4 5 26 32 32
�4 20 4 5 122 32 32
�5 20 4 1 122 32 26

Ly
1Ω 

Ω 

y

2 Ω 3 Ω 4

Ω5

L L

L

prech
tbl

bfs

Lz

(0,0,0)

x

z

Figure 5. Multi-domain BFS computational box composition, axis not to scale.

already substantially better than the value 1.6 found for the previously discussed multi-domain
channel case. Consequently the ratio of the cost of the sequentially implemented LU back
substitution in step 2 to the cost of the parallelized steps 1 and 3 of the Schur complement
algorithm should be much more reduced compared to the multi-domain channel case. Besides
the above grid summary it has to be realized that the grid is highly stretched in both the
streamwise and the wall-normal direction to accommodate a variation of the turbulent length
scales throughout the computational domain. The stretching will have a negative e�ect on
the sti�ness of the original non-preconditioned pressure-Poisson discretized matrix rendering
an iterative solution procedure more di�cult. Also important to note is that the current BFS
grid is composed out of 5 sub-domains with quite varying grid sizes so that, in contrast to
the 8 sub-domain channel grid, the load-balancing for computation on a parallel architecture
will be far from ideal. As such, parallel speedup and e�ciency numbers will be seriously
hampered from the start. Nevertheless, we present in the following a performance comparison
between the di�erent available Poisson solution options which are applicable to this case, for
serial as well as parallel calculations. The serial calculation performance measurements were
obtained on a single processor of the Sun E3500 shared memory architecture, whereas the
parallel timings were done using 5 of its processors such that each sub-domain is allocated to
a di�erent processor. Again, it could not be guaranteed that all other processors were free of
other tasks during the timings, which might a�ect to some degree the run-time performance.
All timings were, typically, repeated, to �lter out possible discrepancies related to a variable
processor occupation. The timings were obtained by advancing the code over 100 time steps
also making sure the �ow �eld was in the regime where statistical sampling could be started
to guarantee the physical correctness of the �ow. In the following we only compare solver
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Table IX. Multi-domain backward-facing step timings for ITERPAR.

No. of processors Poisson Parallel

1 4 min 9 s 2 min 22 s
(5) (6 min 50 s) (44 s)
5 3 min 44 s 44 s
S(n; 5) 1.1 3.2
E(n; 5) 22% 65%

options SCMDIR, SCMITER and ITERPAR, since the single domain direct solvers are not
applicable to the current geometry. The iterative solver selected in case of SCMITER or
ITERPAR is restarted GMRES in combination with an ILUT(
, �ll) type of preconditioner
with a dual dropping strategy where 
=1:0e − 5 and �ll=4:0. The restart value was set to
40. Lowering the initial residual by a factor 5:0e − 3 was found to be su�cient as stopping
criterion to give good accuracy in case of ITERPAR. However, in the case of SCMITER the
criterion had to be lowered as before to a value of 1:0e−5 in order to achieve the same level
of accuracy.
We �rst discuss the timings obtained with the ITERPAR solver which are summarized in

Table IX above. It was observed, that in case of a serial run with solver ITERPAR, typically
every Fourier mode converged in 1–2 iterations except for the lowest wave number, which
needs roughly 10. This indicates again that the preconditioner is quite performant. In case
of a 5-processor run initially, as it was the case for the channel simulation, no overlapping
between sub-domains was used for the construction of the ILUT preconditioner. For this
however it was observed that the GMRES restart size had to be increased to 80 to obtain
convergence for all Fourier modes within 300 iterations and that the lowest frequency mode
typically takes more than 200 iterations to converge, whereas all other modes took from 20
for the lower to typically 6 iterations for the highest frequency modes. The result was a very
poor Poisson timer result, reported in Table IX between brackets, even exceeding by far its
serial counterpart.
The quality of the non-overlapping ILUT-preconditioner constructed, therefore, proves itself

to be largely inadequate for parallel purposes. Overlapping will improve the quality of the
preconditioner and as such reduce the amount of iterations needed for convergence, but at
the same time it will augment the cost per iteration step due to the increased communication
between processors. It was found that an overlap of 2 cells between the sub-domains for
the construction of the ILUT preconditioner resulted in the best Poisson timings which are
retained in Table IX. The overlapping has, clearly, a very favourable e�ect on the Poisson
solution time roughly halving it w.r.t. the non-overlapped case. Nevertheless, the speedup
w.r.t. the serial case remains only marginal. Observe that, unlike the resolved channel case,
the parallel timer part does not show a perfect parallel speedup. This can be fully attributed
to the poor load-balancing of the current multi-domain decomposition, however.
We proceed with the timing results obtained with the SCMDIR solver for a single and

5-processor calculation. The global results, as well as the details of computational load for
di�erent steps are summarized in Table X above. We observe that the Schur complement
method in combination with a direct sub-domain solver clearly outperforms the ITERPAR
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Table X. Multi-domain backward-facing step timings for SCMDIR.

No. of procs Poisson Parallel

1 2 min 48 s 2 min 18 s
5 59 s 44 s
S(n; 5) 2.8 3.1
E(n; 5) 57% 63%

No. of procs Schur step 1 Schur step 2 Schur step 3

1 1 min 11 s 13 s 1 min 17 s
5 21 s 10 s 24 s
S(n; 5) 3.4 3.2
E(n; 5) 67% 64%

Table XI. Multi-domain backward-facing step timings for SCMITER.

No. of procs Poisson Parallel

1 9 min 47 s 2 min 18 s
5 2 min 41 s 44 s
S(n; 5) 3.6 3.1
E(n; 5) 73% 63%

No. of procs Schur step 1 Schur step 2 Schur step 3

1 4 min 56 s 17 s 4 min 27 s
5 1 min 21 s 9 s 1 min 9 s
S(n; 5) 3.7 3.9
E(n; 5) 73% 77%

options, both in the serial and 5-processor calculation. Also, the parallel speedup and e�ciency
numbers of the net Poisson part compares very favourably with the ones of the parallel timer.
The observation that in a serial calculation ITERPAR converges very fast for all Fourier
modes except for the lowest wave number, coupled to the out-performance of the SCMDIR
solution method suggests to combine both methods as implemented in solver SCMFLEX with
m∗=1, i.e. use SCMDIR only for the lowest Fourier mode and ITERPAR for all others.
This was also tried for a single processor calculation giving 3 min 30 s for the Poisson
timer part. So this �exible combination does not outperform SCMDIR proving that the Schur
complement method coupled to a direct solution of the decoupled sub-domain problems is a
highly optimized algorithm even for the highest Fourier mode.
Finally, we present the results obtained with the SCMITER solver for the current backward-

facing step case in Table XI. Despite its surprisingly good parallel speedup and e�ciency
numbers for the Poisson timer, the SCMITER solver is still 3 times slower than the SCMDIR
solver for the 5-processor calculation. The combined results of Tables IX, X and XI show
convincingly that for the current �ow geometry the decoupling of the sub-domain problems
achieved via the Schur complement method is highly desirable, especially in, but not limited
to, a parallel context.
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7. CONCLUSIONS

A non-overlapping domain decomposition strategy for the solution of the elliptic kernel asso-
ciated with the fractional step procedure and=or the semi-implicit discretization of the incom-
pressible Navier–Stokes equations in complex geometries has been presented. The power of
the Schur complement method has been demonstrated, especially when applied in conjunction
with fast direct elliptic solvers, both in a serial and parallel computing context. The run-time
results obtained with the iterative (on a sub-domain basis) solver were not as convincing
as anticipated, mainly because of the relatively strict convergence criterion which was found
to be necessary in problem PI (steps 1 and 3) of the Schur algorithm for a good overall
accuracy. Besides that, its current implementation combining the inherently parallel decou-
pled sub-domain solves into one big distributed parallel Aztec solve negatively in�uences the
speedup numbers because of unnecessary MPI communications.
The more straightforward approach to solve elliptic problems on the current class of com-

plex domains which use parallel iterative preconditioned Krylov sub-space methods, here
implemented using the Aztec package, in general, shows a fairly good performance for serial
calculations, whereas, in a parallel context, the issue of inadequate preconditioning can quickly
degrade its performance. This can be directly linked to the trade-o�, which seems unavoid-
able between the extra MPI communication cost involved to allow for a su�cient amount of
overlapping in the construction of the preconditioning operators to preserve some of its global
convergence characteristics, as opposed to domain decomposition based preconditioners with
relatively little overlap which need more iterations to reach convergence.
In the literature, several methods have been proposed for restoring the global convergence

characteristics of parallel preconditioned iterative solution methods via the introduction of a
low cost coarse-level globally acting reduced version of the elliptic operator in some stages of
the iterative procedure, much in line with the philosophy behind multigrid methods. Most of
these methods can however be interpreted as variants of iterative Schur complement methods
as they could be found in References [26, 29], where step 2 of the Schur algorithm is solved
iteratively instead of with direct methods as in the current approach.
The present results seem to con�rm that none of the currently available parallel precondi-

tioned iterative solvers (not even belonging to the so-called two level class [28, 33, 34, 43])
will ever outperform the currently proposed direct Schur complement algorithm at least for
the class of problems we are concerned with.
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